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Abstract
A multiple signal classification (MUSIC)-like multi-dimensional sampling
method (MDSM) is introduced to locate small three-dimensional scatterers
using electromagnetic waves. The indicator is built with the most stable part
of signal subspace of the multi-static response matrix on a set of combinatorial
sampling nodes inside the domain of interest. It has two main advantages
compared to the conventional MUSIC methods. First, the MDSM is more
robust against noise. Second, it can work with a single incidence even for multi-
scatterers. Numerical simulations are presented to show the good performance
of the proposed method.

(Some figures may appear in colour only in the online journal)

1. Introduction

Inverse scattering methods have been studied for decades and widely applied in remote sensing
[1], through wall imaging [2] and geophysics [3]. The characteristics of scatterers such as
location, shape and material property are retrieved from measured scattered fields. The inverse
scattering methods can generally be divided into two categories depending on the relative scale
of scatterers compared to the wavelength of the illuminating wave. For scatterers of a size
comparable with or even larger than the wavelength, there are various quantitative nonlinear
iterative methods such as contrast source inversion [4], the Gauss–Newton method [5] and
subspace optimization method [6, 7], as well as qualitative non-iterative methods such as linear
sampling [8], the factorization method [9] and the direct imaging algorithm [10]. For small
scatterers, most methods are qualitative and non-iterative, for example, the decomposition of
the time-reversal operator (also called DORT from the French acronym) [11] and the multiple
signal classification (MUSIC) method [12–17]. There are also quantitative methods such as
the compressive sensing (CS) method [18, 19]. The DORT works well for well-resolved
scatterers [14] and it is not a super-resolution imaging algorithm. The CS can work with a
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single incidence but requires the measurement matrix to be incoherent [18]. Compared to
them, the MUSIC method is simple and works for single frequency data with super-resolution.

As one of the most popular methods to determine the locations of small scatterers,
MUSIC defines a pseudo-spectrum function that peaks at the locations of scatterers based
on the analysis of the multi-static response (MSR) matrix [20–22]. As is known, the main
feature of the time-reversal MUSIC is super-resolution [14]. Namely, the MUSIC method can
locate scatterers with separation of less than half a wavelength. The MUSIC method has been
successfully applied in acoustic [23, 24], electromagnetic [13, 25] and elastic waves [26, 27].
However, the imaging ability of MUSIC declines dramatically as the noise level increases
[24, 28]. In these circumstances, close scatterers appear as a big spot and cannot be
distinguished from each other. In [12], an enhanced MUSIC method has been proposed that
improves the imaging ability of MUSIC in the presence of moderate noise. On the other hand,
compared to methods [18, 19, 29] with a single or few incidences, MUSIC needs multiple
incidences, which also limits its application in some practical situations.

In this paper, a MUSIC-like multi-dimensional sampling method (MDSM) is proposed
to further increase the robustness against noise as well as to deal with the scattering data
with a single incidence. By simultaneously sampling several nodes in the domain of interest,
for example, two or more nodes (considered as a combinatorial set) are sampled together, the
MDSM is able to construct an indicator using only the most stable part of the signal subspace of
the MSR matrix. The more the simultaneously sampled nodes are used, the fewer the number
of leading singular vectors needed. In particular, when the dimension of the combinatorial set
is equal to the number of unknown scatterers, the MDSM uses only the first leading singular
vector of the MSR matrix. This implies that the MDSM is able to work with a single incidence.
We should indicate that the idea of sampling on a combinatorial set has also been used in the
high-dimensional signal subspace method (HDSSM) [30] which is closely related to maximum
likelihood estimation. Compared to conventional MUSIC, the HDSSM has the advantage that
it can locate more scatterers with the same measured scattered field. However, this method is
very sensitive to noise due to the use of a large number of high-dimensional singular vectors.

To summarize, there are two advantages of the introduced method over the conventional
MUSIC methods. First, the MDSM is very stable against noise, due to the use of far fewer
leading singular vectors. Second, the proposed method can work with a single incidence.
The main drawback of MDSM is its large computational cost compared to the conventional
MUSIC method due to the use of combinatorial sets for sampling. Therefore, the MDSM can be
considered as a complementary method to MUSIC. Namely, the MDSM can work efficiently
on a much smaller domain obtained by MUSIC where the scatterers are most probably present
but cannot be separated by MUSIC due to their close distances.

The structure of this paper is as follows. First, in section 2, the forward model
of electromagnetic scattering and conventional time-reversal MUSIC methods are briefly
reviewed. Then the MDSM is introduced in section 3. Numerical examples are presented in
section 4. Finally, conclusions are made in section 5.

2. The forward scattering model and conventional MUSIC methods

In this paper, vectors and matrices are denoted by letters with single and double bars,
respectively. Consider M three-dimensional spherical scatterers at {s̄ j}M

j=1, which are
illuminated by electromagnetic waves from N transmitters located at {r̄ j}N

j=1. Suppose the
receivers are coincident with transmitters. Each transceiver consists of three antennas, oriented
in the x-, y- and z-directions, respectively. The angular frequency is ω and all materials including
background and scatterers are non-magnetic, i.e. μ = μ0.
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The 3N × 3N MSR matrix is given as [12, 16]

A = R · � · (I − � · �)−1 · R
T
, (1)

where R(i, j) = iωμ0G(r̄i, s̄ j), � = diag(ξ 1, ξ 2, . . . , ξM ), �(i, j) is null for i = j and

otherwise iωμ0G(s̄i, s̄ j), and the superscript T denotes the transpose. I is a 3M-dimensional

identity matrix. G(r̄i, s̄ j) is the dyadic Green’s function in free space [31] and ξ j denotes
the polarization tensor of the jth scatterer and its expression can be found in [16]. In this
paper, all scatterers are supposed to be non-degenerate, which means ξ j has full rank for
j = 1, 2, . . . , M.

The 3N × 3 test matrix Q(t̄) = [G
T
(r̄1, t̄), G

T
(r̄2, t̄), . . . , G

T
(r̄N, t̄)]T is reformulated

as Q(t̄) = [Q̄x, Q̄y, Q̄z](t̄), where t̄ is an arbitrary test node in the domain of interest and
Q̄ j(t̄), j = x, y, z represents Green’s function vector observed at antennas due to a dipole
source at the position t̄ oriented in the x-, y-, z-direction, respectively. As is known, the
MUSIC method is based on the following theorem.

Theorem 1. Suppose the size of MSR matrix A is sufficiently large. Let ā ∈ C
3\{0}, then

Q(t̄) · ā ∈ R(A) if and only if t̄ ∈ {s̄ j}M
j=1, (2)

where R(A) denotes the range space of A.

For detailed proof of theorem 1, refer to [6, 12]. Suppose the singular value decomposition

(SVD) of the MSR matrix is A = U ·� ·V H
, where H denotes the complex conjugate transpose.

In a component form, there is A · v̄ j = σ j · ū j, j = 1, 2, . . . , 3N. As is known, the range space

of A is R(A) = span
{
ū j, σ j > 0

}
with dimension K = ∑M

i=1 rank(ξ j). With the MSR matrix,
there are also other SVD-based detection and localization techniques, such as [20–22].

The MUSIC method is a qualitative method and its indicator peaks at locations of
scatterers. In the standard time-reversal MUSIC method [13], the indicator (pseudo-spectrum
function) is defined as

W1(t̄) = 1∑3N
i=K+1

∣∣ūH
i · Q(t̄) · ā

∣∣2
(3)

= 1

|Q(t̄) · ā|2 − ∑K
i=1

∣∣ūH
i · Q(t̄) · ā

∣∣2
, (4)

where | · | denotes the Euclidean distance and ā is an arbitrarily given test direction.
If there is noise present in the measured scattered fields, the noise is brought into the

indicator W1(t̄) by the first K leading singular vectors as seen from (4). We also know that the
larger the singular value, the less perturbation the noise causes on its corresponding singular
vector. More theoretical analysis on the MSR matrix in the presence of noise can be found in
[20–22] using random matrix theory. Therefore, one way to reduce the noise effect is to use
only the first few leading singular vectors and their number should be as low as possible. This
idea was realized partly in the enhanced MUSIC [12] by choosing an optimal test direction
āopt(t̄) at each test node t̄ instead of a fixed ā. Here, the optimal test direction is chosen to

be the direction ā(t̄) such that Q(t̄) · ā(t̄) has the smallest angle with a given signal subspace
composed of the first L leading singular vectors. Therefore, āopt(t̄) satisfies [12]

āopt(t̄) = arg max
ā

∑L
i=1

∣∣ūH
i · Q(t̄) · ā

∣∣2

|Q(t̄) · ā|2
. (5)
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Correspondingly, the following pseudo-spectrum function [12] is defined:

W2(t̄) = 1

1 − cos2(θmin(t̄))
, (6)

where cos2(θmin(t̄)) =
∑L

i=1 |ūH
i ·Q(t̄)·āopt(t̄)|2

|Q(t̄)·āopt(t̄)|2
and θmin(t̄) is the minimal angle that Q(t̄) · āopt(t̄)

makes with the subspace UL = span{ū j, j = 1, 2 . . . , L}.
Due to the use of the optimal test direction, the number L of leading singular vectors can

be reduced from K to K − 2, i.e. L = K − 2 in the enhanced MUSIC W2(t̄). Compared to
W1(t̄) in (4), W2(t̄) keeps a higher resolution against noise. However, it is still vulnerable to
noise when the noise level is high because L is still close to K in W2.

3. The multi-dimensional sampling method

The MDSM is motivated by an idea similar to the aforementioned enhanced MUSIC and
thus it is still referred to as a MUSIC-like method. However, it samples on high-dimensional
combinatorial sets of nodes instead of individual physical nodes. Therefore, the number L of
singular vectors used to construct the indicator will be further reduced to get a more stable
method against noise.

3.1. The theoretical foundation of MDSM

Suppose {t̄1, t̄2, . . . , t̄P} is an arbitrary P-dimensional combinatorial set, where t̄ j is an arbitrary
test node in the domain of interest and any two of them are not coincident. For a given subspace
UL(L � K), the condition that [Q(t̄1), Q(t̄2), . . . , Q(t̄P)] · ā ∈ UL is actually equivalent to
finding non-trivial λi and ā such that

L∑
i=1

λiūi = [Q(t̄1), Q(t̄2), . . . , Q(t̄P)] · ā, (7)

where ā is a 3P-dimensional test direction.
We are concerned about the existence of non-trivial ā and λi in (7) for any given

combinatorial set {t̄1, t̄2, . . . , t̄P} and L-dimensional signal subspace. The answer to this
problem implies the principle of MDSM, which is given as follows.

Let J̄(i)
j denote the induced electric current in the jth scatterer corresponding to the ith

eigenstate. There is [12]

ūi =
M∑

j=1

Q(s̄ j) · J̄(i)
j , i = 1, 2, . . . , L. (8)

Combining (7) and (8), we have
M∑

j=1

Q(s̄ j) ·
(

L∑
i=1

λiJ̄
(i)
j

)
= [Q(t̄1), Q(t̄2), . . . , Q(t̄P)] · ā

=
P∑

k=1

Q(t̄k) · āk, (9)

where āk (k � P) is a three-dimensional vector and ā = [
āT

1 , āT
2 , . . . , āT

P

]T
. There are three

cases to be considered. (a) No element of the combinatorial set {t̄1, t̄2, . . . , t̄P} belongs to
{s̄ j}M

j=1. (b) All elements of the combinatorial set {t̄1, t̄2, . . . , t̄P} belong to {s̄ j}M
j=1. (c) Some

elements of the combinatorial set {t̄1, t̄2, . . . , t̄P} belong to {s̄ j}M
j=1.
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From theorem 1, we know that vertors of {Q(t̄l )} are linearly independent for different
locations t̄l . Therefore, for case (a), (9) holds only if λi = 0 and ā = 0. For case (b), suppose
t̄k = s̄k for k = 1, 2, . . . , P. There must be

L∑
i=1

J̄(i)
j λi = ā j, j = 1, 2, . . . , P, (10)

L∑
i=1

J̄(i)
j λi = 0, j = P + 1, P + 2, . . . , M. (11)

Non-trivial ā j exists in (10) if (11) owns non-trivial solution {λi}L
i=1. It implies that vectors

J̄(i) = [(
J̄(i)

P+1

)T
,
(
J̄(i)

P+2

)T
, . . . ,

(
J̄(i)

M

)T]T
, i = 1, 2, . . . , L should be linearly dependent. This is

true if L is no less than one plus the row number (which physically equals to the total number of
independent dipoles that can be excited at scatterers s̄ j, j = P+1, P+2, . . . , M) of the matrix
[J̄(1), J̄(2), . . . , J̄(L)]. For example, when all scatterers are non-degenerate, (11) has non-trivial
solution when L � 3(M − P) + 1. For case (c), suppose t̄1 = s̄1 and other {t̄ j}P

j=2 are not
the positions of scatterers. Then āk, k = 2, 3, . . . , P, should be zero vectors. The problem is
equivalent to discussing case (b) with P = 1. The above analysis can be summarized into the
following theorem.

Theorem 2. Suppose there are M scatterers. For its arbitrary subset of scatterers with index
{i1, i2, . . . , iP}(P � M), there exists an ā ∈ C

3P\{0} such that

[Q(s̄i1 ), Q(s̄i2 ), . . . , Q(s̄iP )] · ā ∈ UL, (12)

where L � Z + 1 and Z = ∑M
i�={i1,i2,...,iP} rank(ξ i).

Since we aim to find the minimum eligible L, we choose L to be Z+1. Theorem 2 indicates
the condition that ā exists. It can be seen that L will be reduced if P is increased. Particularly,
if P = M, i.e. Z = 0, ā exists in theorem 2 when L = 1. From theorems 1 and 2, we have the
following corollary.

Corollary 3. Suppose the size of MSR matrix A is sufficiently large. For a given M-dimensional
combinatorial set {t̄1, t̄2, . . . , t̄M}, there exists an ā ∈ C

3M\{0} such that

[Q(t̄1), Q(t̄2), . . . , Q(t̄M )] · ā ∈ U1 i f and only i f t̄ j = s̄ j (13)

for j = 1, 2, . . . , M, where U1 = span{ū1}.
Actually, the existence of ā in corollary 3 can also be obtained by another simple way.

Namely,
U1 ⊂ R(A) ⊆ span{Q̄x(s̄ j), Q̄y(s̄ j), Q̄z(s̄ j), j = 1, 2, . . . , M}.

Now let us introduce the way to compute ā in theorem 2. This is also done by the idea of
optimal test direction. We denote the test matrix [Q(t̄1), Q(t̄2), . . . , Q(t̄P)] as X (t̄1, t̄2, . . . , t̄P).

The optimal test direction āopt(t̄1, t̄2, . . . , t̄P) at a combinatorial set {t̄1, t̄2, . . . , t̄P} is solved such

that the vector X (t̄1, t̄2, . . . , t̄P) · āopt(t̄1, t̄2, . . . , t̄P) makes the smallest angle θmin(t̄1, t̄2, . . . , t̄P)

with a given subspace UL. Thus, āopt(t̄1, t̄2, . . . , t̄P) satisfies

āopt(t̄1, t̄2, . . . , t̄P) = arg max
ā

∑L
i=1

∣∣ūH
i · X (t̄1, t̄2, . . . , t̄P) · ā

∣∣2

|X (t̄1, t̄2, . . . , t̄P) · ā|2
. (14)
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The āopt(t̄1, t̄2, . . . , t̄P) in (14) is obtained as the eigenvector corresponding to the maximum

eigenvalue of matrix (X
H · X )−1([U · X]H · [U · X]), where U = [ū1, ū2, . . . , ūL]H.

Similar to the enhanced MUSIC, the indicator (pseudo-spectrum function) of MDSM is
defined as

W3(t̄1, t̄2, . . . , t̄P) = 1

1 − cos2(θmin(t̄1, t̄2, . . . , t̄P))
, (15)

where

cos2(θmin(t̄1, t̄2, . . . , t̄P)) =
∑L

i=1 |ūH
i · X (t̄1, t̄2, . . . , t̄P) · āopt(t̄1, t̄2, . . . , t̄P)|2

|X (t̄1, t̄2, . . . , t̄P) · āopt(t̄1, t̄2, . . . , t̄P)|2
.

For convenience, we denote the MDSM with L leading singular vectors and P-dimensional
combinatorial set as MDSM(P, L).

3.2. The characteristics of MDSM

In this section, we will discuss the characteristics of MDSM in (15) such as its stability,
usage limitation and computational cost. These three issues are discussed one by one in the
following.

Firstly, the stability of MDSM against noise is closely related to L. It is worth looking into
the physical meaning of ūi (i = 1, 2, . . . , L) that are used in the indicator function W3. The
definition of SVD, A · v̄i = σi · ūi, actually shows that ūi is the measured scattering data when
the transmitting antennas are loaded with current v̄i/σi, i = 1, 2, . . . , L. Thus, in the indicator
function (15), a total number of L scattering experiments are conducted, with ū1 the most
stable and ūL the least stable. As shown in corollary 3, one is able to locate all the scatterers
with only the first singular vector which is the most stable against noise compared to other
ones. However, in MDSM with L = 1, its resolution is strictly limited by the noise level of
the first singular vector. In other words, only one scattering experiment is conducted, i.e. only
one incidence with v̄1/σ1 as the driving current.

In comparison, when L is chosen as larger than 1, a trade-off between the following
two factors has to be taken into account. One is that from the second incidence onwards,
experimental results gradually become less stable. The other is that we have more scattering
data at hand since several experiments have been conducted. A simultaneous use of all
experimental data may reduce the effect of error that is contained in each individual experiment,
including the first one. Obviously, whereas the first factor favors a small value of L, the second
one favors a reasonably large L. All our numerical simulations conducted so far show the
optimal value of L, that is, 1 � L � 3. In this case (L � 3), there is only a single peak
corresponding to the scatterer positions appearing in MDSM.

Secondly, when L � 3, the MDSM needs to do sampling with M-dimensional
combinatorial sets. It means that prior information that P = M is required. Therefore, the
MDSM is used in two ways depending on whether M is known or not. If M is known, we
directly make use of MDSM(M, L � 3). Otherwise, a strategy of using MDSM with L � 3
recursively from low (P = 1) to high dimension is necessary. It can be easily determined
when P reaches M. Namely, by theorem 2, the number of peaks changes from zero, one to
multiple successively with P = M −1, P = M and P = M +1. We mention in passing that the
MDSM(M + 1,L � 3) peaks at each combinatorial set {s̄1, s̄2, . . . , s̄M, t̄l} with t̄l an arbitrary
non-scatterer location. The change in the number of peaks is a simple and effective indicator
in determining the total number M of scatterers.

6
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Thirdly, the MDSM(P, L) needs to do sampling with P-dimensional combinatorial sets.
Suppose there are Y individual nodes in the domain of interest. The total number of
combinatorial sets is CP

Y which is very large when Y and P are large. The computational
cost of MDSM can be reduced by using smaller Y and P. For reducing Y, the MDSM is
suggested to be used as a post-processing method after the pre-screening by MUSIC methods.
Namely, the MDSM is applied to those sub-domains where scatterers are shown to be present as
displayed in the MUSIC pseudo-spectrum. Thus, the total number Y can be reduced effectively.
For reducing P, an extreme case is the MDSM with P = 1 which is just the enhanced MUSIC
in [12]. However, the cost is that we need to increase L simultaneously, which may deprave
the stability of the MDSM. To summarize, whereas the MUSIC, which can be regarded as a
special case of the MDSM with P = 1, is most computationally economic, the imaging results
are least stable in the presence of noise. On the other extreme, the MDSM with P = M is
most computationally expensive, but it yields most stable imaging results in the presence of
noise. Thus, if the noise level is moderate, the MDSM with 1 < P < M may achieve a good
compromise between stability and computational cost.

Different from L � 3, a lot of peaks may appear in MDSM(P, L) with L > 3. From
theorem 2, for a given P-dimensional combinatorial set containing at least one scatterer,
whether the peak will appear or not is determined by the value of L. For example, suppose
there are three non-degenerate scatterers. The rank of the MSR matrix is 9. When L = 4 and
P = 2, there will be three peaks for MDSM(2,4), i.e. any combination of two out of the three
scatterers leads to a peak in the pseudo-spectrum. If we increase L, for example L = 7, in
addition to the existing three peaks, MDSM(2,7) produces many other peaks, which occur
at each two-dimensional combinatorial set composed of one scatterer position with another
non-scatterer position.

In this paper, we are interested in reconstructing small scatterers in the presence of high-
level noise where the conventional MUSIC struggles. Thus, we only use the MDSM with
L � 3. According to the above analysis, in figure 1, we give a flowchart to show the use of
MDSM in practice.

3.3. The MDSM with a single incidence

As shown in corollary 3, the MDSM works for only a single incidence if M-dimensional
combinatorial sets are taken for sampling. Next we introduce the details for this case.

Each column of A in (1) corresponds to the scattered field due to a single incidence. For
example,

Ā j = A(:, j) = [Q(s̄1), Q(s̄2), . . . , Q(s̄M )] · ᾱ( j) (16)

is the measured scattered field due to the jth incidence, where ᾱ( j) = iωμ0�·(I−�·�)−1 ·RT

(:, j). All scatterers can be located by applying the MDSM(M,1) with Ā j. The first singular
vector ū1 of Ā j (which is now considered as a special matrix with a single column) is simply
the normalized scattered field Ā j/|Ā j|.

Compared to the MDSM(M,1) with full incidences (namely A in (1)), the MDSM(M,1)
with single incidence (Ā j in (16)) has the advantage of less measurement cost but at the same
time has the disadvantage in the stability against noise. This is because the SVD has an effect of
denoise. It can extract a synthetic normalized scattered field (namely the first leading singular
vector) with less noise from more measurement.

Because of this reason, taking more than one incidence usually leads to a much better
result than a single incidence. Suppose there are l incidences. For example, the { j1, j2, . . . , jl}th

7
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Figure 1. A flowchart of the use of the MDSM.

columns of the scattered field are chosen from the MSR matrix A in (1). There is

Aj1,2,..., jl = [A(:, j1), A(:, j2), . . . , A(:, jl )] (17)

= [Q(s̄1), Q(s̄2), . . . , Q(s̄M )] · [ᾱ( j1), ᾱ( j2), . . . , ᾱ( jl )]. (18)

The MDSM(M,1) can be applied with the above A j1,2,..., jl instead of A to locate all the scatterers.
Usually, two or three incidences are enough to get satisfactory results. Here, L can also be
relaxed to L � 3 if the number of incidences is large enough, which is helpful to confirm the
validity of the results obtained by the MDSM with L = 1.

4. Numerical simulations

In this section, the proposed method is tested through numerical simulations. Two examples
are considered, the MDSM with multiple incidences and the MDSM with a single (or
few) incidence(s). The experimental configuration is introduced first. Suppose the working
frequency is 300 MHz. The background medium is air with permittivity and permeability ε0

and μ0, respectively.

Example 1: Three close scatterers with full incidences

In this example, three scatterers with locations at s̄1 = (−0.1166,−0.0047,−0.0167)λ0,
s̄2 = (0.0611, 0.1730,−0.0167)λ0 and s̄3 = (−0.0278, 0.0842, 0.1610)λ0, respectively, are
considered, where λ0 is the wavelength of free space. The minimal distance between these three
scatterers is 0.218λ0 and the largest distance is 0.251λ0. The accurate locations of scatterers
for example 1 are shown in figure 2(a). Their permittivities are ε1 = diag(2ε0, 2ε0, 2ε0),
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Figure 2. Accurate locations of scatterers. (a) Example 1. (b) Example 2.
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Figure 3. Singular values of the MSR matrix. (a) Singular values with 30 dB Gaussian white noise
( j = 1, 2, . . . , 48). (b) Singular values with 20 dB Gaussian white noise ( j = 1, 2, . . . , 48).

ε2 = diag(2ε0, 2ε0, 2ε0) and ε3 = diag(2ε0, 3ε0, 4ε0), respectively. The Euler angles are
set as

[
π
4 , π

3 , 3π
8

]
. The test domain is chosen to be a square domain [−0.25, 0.15]λ0 ×

[−0.15, 0.25]λ0 centered at (0, 0, 0) on the y = x + 0.112λ0 plane. All these three scatterers
have radius a = λ0

30 . There are 16 receivers (transmitters are coincident with these receivers)
located at the x = −13λ0 plane. Half of the receivers are along the y-axis, while the rest are
along the z-axis where they are centered at (−13,−9, 11)λ0 and the two neighboring cells are
at distance 5λ0.

Let us first consider MUSIC methods in the noise-contaminated case. Gaussian white
noises of 30 and 20 dB [12] are added to the MSR matrix, respectively. The singular values
of the MSR matrix are shown in figure 3. It can be seen that the rank of the noiseless
MSR matrix is 9 and the small singular values change a lot due to noise, especially when
the noise level is high. The results of standard time-reversal MUSIC W1(t̄) as well as the
enhanced MUSIC W2(t̄) are shown in figure 4. Here K = 9 and L = 7 are used in W1(t̄)
and W2(t̄), respectively. It can be seen that both the MUSIC methods fail to locate any of
the scatterers due to the influence of noise. Indeed, the problem is challenging since the
three scatterers are very closely located. All three scatterers mix together and become a
large spot. It illustrates that the MUSIC method cannot get satisfactory results when noise is
high.

Next, we consider the MDSM for example 1. To verify the theoretical analysis in
section 3.2, we first show the results of MDSM(P,1) in the noise-free case. Suppose the
number of scatterers M is unknown. According to the flowchart in figure 1, the MDSM is

9
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Figure 4. Pseudo-spectra of the standard and enhanced MUSIC methods under different noise
levels. (a) Standard MUSIC with 30 dB noise. (b) Enhanced MUSIC with 30 dB noise. (c) Standard
MUSIC with 20 dB noise. (d) Enhanced MUSIC with 20 dB noise.

applied from low (P = 1) to high dimension (P = 4) in the sub-domain (as seen in the region
surrounded by the dashed line in figure 2(a)) obtained by MUSIC. The corresponding results
of MDSM are shown in figure 5. Here, small circular marker indicates the pseudo-spectrum
value at each combinatorial set, while the peaks (with values larger than 1014) are marked by
a plus sign. It can be seen that the pseudo-spectrum values jump several orders of magnitude
when P changes from 2 to 3. A single peak appears when P = 3, as shown in figure 5(c).
This means that the number of scatterers is 3. When further increasing P to 4, 33 peaks (the
peak number of MDSM(M + 1,1) is equal to Y − M; here Y = 36 is the total physical nodes
in the domain of interest) appear, as shown in figure 5(d). It further ensures our analysis
on the number of scatterers. All these results are consistent with the theoretical analysis in
section 3.2.

Then, we consider the noise-contaminated case of MDSM for example 1. For this case,
if the number M of scatterers is unknown, the way to determine M in MDSM is same as
the above noise-free case. It still can be determined by the multi-fold procedure as shown
in figure 6. It is seen that the maximal magnitude of pseudo-spectra increases significantly
with P for P � M (M = 3 here) and it retains the same level (104 for this example) when
P = M + 1(= 4). Then M = 3 is confirmed. Therefore, in the following, we only show the
results of MDSM with P = M (P = 3 here). In order to intuitively judge the accuracy of the
results, the exact index of combinatorial set is marked with a small square marker, as seen in
figure 7. It is observed that both results of the MDSM(3,1) and MDSM(3,2) with 30 dB noise
are accurate. However, the peak with L = 2 is much higher and more obvious than L = 1.

Although not shown here, the result of L = 3 is similar to the result of L = 2. It confirms that
the result of L = 1 is reliable. When noise is increased to 20 dB, we can see from figure 7(c)
the MDSM(3,1) still works but the highest peak is not outstanding among others. In this case,
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Figure 5. Pseudo-spectra of the MDSM (L = 1) in noise-free case with different dimensions of
combinatorial sets. (a) MDSM(1,1). (b) MDSM(2,1). (c) MDSM(3,1). (d) MDSM(4,1).
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Figure 6. Pseudo-spectra of MDSM (L = 1) with different dimensions of combinatorial sets under
30 dB Gaussian white noise. (a) MDSM(1,1). (b) MDSM(2,1). (c) MDSM(3,1). (d) MDSM(4,1).
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Figure 7. Pseudo-spectra of the MDSM under different noise levels. (a) MDSM(3,1) with 30 dB
noise. (b) MDSM(3,2) with 30 dB noise. (c) MDSM(3,1) with 20 dB noise. (d) MDSM(3,2) with
20 dB noise.

comparing the results with the MDSM(3,2) and MDSM(3,3) helps to verify the validity of the
obtained results, as shown in figure 7(d). These results in figure 7 show that the MDSM works
well with high noise.

Example 2: Three close scatterers with a single incidence

In the second example, we consider the MDSM with a single or few incidences.
Suppose there are three scatterers with locations at s̄1 = (−0.1610,−0.0491,−0.0611)λ0,
s̄2 = (−0.1166,−0.0047, 0.1610)λ0 and s̄3 = (0.0611, 0.1730,−0.0611)λ0. The accurate
locations of scatterers for example 2 is shown in figure 2(b). The smallest distance between
them is 0.231λ0, while the largest distance is 0.336λ0. Other parameters are the same as that
in the first example.

To verify the validity of MDSM with a single incidence, noise-free results of the MDSM
are first given in figure 8(a). It can be seen that the MDSM works perfectly with the first
incidence without noise. In a noise-contaminated case, where 30 dB Gaussian white noise is
added to the measured scattered field, the pseudo-spectra of MDSM with different numbers of
incidences are illustrated in figures 8(b)–(f). The results of MDSM with the 11th incidence are
shown in figure 8(b), where the highest peak corresponds to the exact index of the combinatorial
set. In comparison, we see in figures 8(c) and (e) that taking two (the 11th and 23rd) or three
(the 11th, 23rd and 47th) incidences helps to get a sharper peak, which is necessary when
noise in the measured scattered field due to a single incidence is too high. This is reasonable
because multiple incidences are helpful in obtaining a more stable leading singular vector

12



Inverse Problems 28 (2012) 115004 R Song et al

0 1 2 3 4

x 10
4

0

2

4

6

8

10

x 10
14

combinatorial set index

ps
eu

do
−

sp
ec

tr
um

0 1 2 3 4

x 10
4

0

500

1000

1500

combinatorial set index

ps
eu

do
−

sp
ec

tr
um

0 1 2 3 4

x 10
4

0

1000

2000

3000

combinatorial set index

ps
eu

do
−

sp
ec

tr
um

0 1 2 3 4

x 10
4

0

2000

4000

6000

8000

10000

12000

combinatorial set index

ps
eu

do
−

sp
ec

tr
um

0 1 2 3 4

x 10
4

0

1000

2000

3000

4000

5000

combinatorial set index

ps
eu

do
−

sp
ec

tr
um

0 1 2 3 4

x 10
4

0

5000

10000

combinatorial set index

ps
eu

do
−

sp
ec

tr
um

)b()a(

(c) (d)

(e) (f)

Figure 8. Pseudo-spectra of the MDSM with different numbers of incidences, where (a) is noise-
free and others ((b)–(f)) are under 30 dB Gaussian white noise. (a) MDSM(3,1) with the first
incidence. (b) MDSM(3,1) with the 11th incidence. (c) MDSM(3,1) with the 11th and 23rd
incidences. (d) MDSM(3,2) with the 11th and 23rd incidences. (e) MDSM(3,1) with the 11th, 23rd
and 47th incidences. (f) MDSM(3,2) with the 11th, 23rd and 47th incidences.

than a single incidence. At the same time, the results of the MDSM with L = 2 for two or
three incidences are also given in figures 8(d) and (f), respectively, which further confirm the
validity of the results obtained by the MDSM with L = 1. Therefore, as shown in figure 8,
making use of two or three incidences rather than a single incidence improves the stability of
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the MDSM. Of course, if noise is too high, an extreme case is to use the MDSM with full
incidences to obtain satisfactory results.

5. Conclusions

In this paper, we have introduced the MDSM to locate small 3D scatterers, which can be seen
as a generalization of conventional MUSIC methods. It shares the theoretical foundation of
MUSIC (theorem 1) but has special advantages due to the use of the optimal test direction
(theorem 2). Numerical simulations verify the advantages of the proposed method over the
known time-reversal MUSIC methods. Namely the MDSM is more robust against noise and is
capable of working with a single or a small number of incidences. The drawback of the MDSM
is its large computational cost because of the use of combinatorial sampling sets. Therefore,
the MDSM can be considered as a complementary method of MUSIC, since it is suitable for
locating a low number of scatterers inside a small domain of interest. Finally, although the
MDSM is introduced for electromagnetic waves in this paper, it can also be easily extended
to acoustic or elastic waves.
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